Строительство и ремонт

Умножение числа на ноль правило. Правило умножения любого числа на ноль

Как вы думаете, какую из данных сумм можно заменить произведением?

Будем рассуждать так. В первой сумме слагаемые одинаковые, число пять повторяется четыре раза. Значит, можно заменить сложение умножением. Первый множитель показывает, какое слагаемое повторяется, второй множитель - сколько раз это слагаемое повторяется. Заменяем сумму произведением.

Запишем решение.

Во второй сумме слагаемые разные, поэтому заменить её произведением нельзя. Складываем слагаемые и получаем ответ 17.

Запишем решение.

Можно ли произведение заменить суммой одинаковых слагаемых?

Рассмотрим произведения.

Выполним действия и сделаем вывод.

1*2=1+1=2

1*4=1+1+1+1=4

1*5=1+1+1+1+1=5

Можно сделать вывод: всегда количество единиц-слагаемых равно числу, на которое умножается единица.

Значит, при умножении числа один на любое число получается то же самое число.

1 * а = а

Рассмотрим произведения.

Эти произведения невозможно заменить суммой, так как в сумме не может быть одно слагаемое.

Произведения во втором столбике отличаются от произведений в первом столбике только порядком множителей.

Значит, чтобы не нарушалось переместительное свойство умножения, их значения также должны быть равны соответственно первому множителю.

Сделаем вывод: при умножении любого числа на число один получается то число, которое умножали.

Запишем этот вывод в виде равенства.

а * 1= а

Решите примеры.

Подсказка: не забудьте выводы, которые мы сделали на уроке.

Проверьте себя.

Теперь давайте понаблюдаем за произведениями, где один из множителей нуль.

Рассмотрим произведения, где первый множитель - нуль.

Заменим произведения суммой одинаковых слагаемых. Выполним действия и сделаем вывод.

0*3=0+0+0=0

0*6=0+0+0+0+0+0=0

0*4=0+0+0+0=0

Всегда количество нулей-слагаемых равно числу, на которое умножается нуль.

Значит, при умножении нуля на число получается нуль.

Запишем этот вывод в виде равенства.

0 * а = 0

Рассмотрим произведения, где второй множитель - нуль.

Эти произведения невозможно заменить суммой, так как в сумме не может быть нуль слагаемых.

Сравним произведения и их значения.

0*4=0

Произведения второго столбика отличаются от произведений первого столбика только порядком множителей.

Значит, чтобы не нарушалось переместительное свойство умножения, их значения также должны быть равны нулю.

Сделаем вывод: при умножении любого числа на нуль получается нуль.

Запишем этот вывод в виде равенства.

а * 0 = 0

А вот делить на нуль нельзя.

Решите примеры.

Подсказка: не забудьте выводы, сделанные на уроке. При вычислении значений второго столбика будьте внимательны при определении порядка действий.

Проверьте себя.

Сегодня на уроке мы познакомились с особыми случаями умножения на 0 и 1, потренировались умножать на 0 и на 1.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. - М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. - М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. - М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. - М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. - М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. - М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. - М.: «Экзамен», 2012.
  1. Nsportal.ru ().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнее задание

1. Найдите значения выражений.

2. Найдите значения выражений.

3. Сравните значения выражений.

(56-54)*1 … (78-70)*1

4. Составьте задание по теме урока для своих товарищей.

Рассмотрим пример умножения на ноль целого числа. Сколько будет, если 2 (два) умножить на 0 (ноль)? Любое число, умноженное на ноль, равняется нулю. И не важно, известно нам это число, или не известно.

Согласно общепринятому определению, ноль — это число, отделяющее положительные числа от отрицательных на числовой прямой. Ноль — это самое проблематичное место в математике, которое не подчиняется логике, а все математические действия с нулём основаны не на логике, а на общепринятых определениях.

Ноль является первой цифрой во всех стандартных системах счисления. С нулевого дня в календаре майя начинался каждый месяц. Интересно, что тем же самым знаком ноль математики майя обозначали и бесконечность — вторую проблему современной математики. Ноль без палочки. Абсолютный нуль. Ноль целых пять десятых. Пять умножить на ноль — равняется нулю 5 х 0 = 0 Правило умножения на ноль смотрите выше по тексту. Чатыри умножить на ноль бесплатно — бесплатно отвечаю, что будет ноль. В нагрузку бесплатная справка — слово «четыре» пишется чуть-чуть иначе, чем пишите вы в своем поисковом запросе.

https://youtu.be/EGpr23Tc8iY

Там, где в математике встречается ноль, логика бессильна

Если вам понравилась публикация и вы хотите знать больше, помогите мне в работе над другими материалами. Оно появилось в комментариях и чем-то меня зацепило. Вопрос Студента: А теперь, уважаемый автор, умножьте, пожалуйста, ноль на ноль и скажите, сколько получится в результате?

Я в своей статье «Что есть ноль» уже объяснил где её можно применять. Нужно просто брать те ответы, которые пишут в учебниках: ноль, умноженный на ноль, равняется нулю; на ноль делить запрещено. Из всех обозримых вариантов умножения и деления на ноль ученые неучи выбрали самый приемлемый и удобоваримый вариант.

С делением на ноль у меня лично никаких проблем нет. Про связь между формулой Герона и 0/0=1 слышу впервые. Однако есть что-то нечистое в математике. Проблемы с возведением нуля в нулевую и отрицательную степень. Но с таким же успехом можно сказать, что 0^2 тоже не имеет смысла, потому как 0^2=0^5/0^3=0/0, а на ноль делить нельзя.

Ноль в нулевой степени — выражение, не имеющее смысла. Ноль в нулевой степени равняется единице — так показывают формулы. Это количество чего угодно, каких-то реальных, материальных вещей, можно умножить на число. При этом количество чего-то выражается только нулем или положительным числом.

Все в единицах и в математике на данном уровне в порядке. Это условность, градусы не могут быть выражены количеством, поэтому умножить их на число нельзя. Где-то на этом сайте есть Дурнев со своими вопросами по школьной программе, в том числе и по математике. Может, его придумали точно так же, как и ноль? Чтобы наложить определенные правила и подчинить им всех остальных людей. Чего только человек не сделает ради себя, любимого.

Достаточно того, что в учебниках часто пишут «принадлежит множеству натуральных чисел» даже тогда, когда это выполняется для всех чисел, за исключением комплексных. Бесконечное число нулей в нуле — это выдумки шаманов для пещерных людей:) Если закрыть глаза, то всё, на что мы смотрим, будет выглядеть одинаково черным. Умножение на ноль нужно начинать рассматривать совсем с другого конца. Что такое умножение?

Достаточно понять, что такое умножение, тогда вопрос с результатом умножения на ноль сам собою решится. 2 яблока, и пытаясь умножить их на 0 яблок, в результате мы теряет свои 2 яблока. Судя по всему, те, кто это спрашивает, потеряли как минимум по одной цифре в начале каждого числа. 10 и 11 — здесь уместно говорить о процентах.

И интересно как при делении 0 на любое число вы это число сможете вычитать вообще (пусть даже и ноль раз)..

Не может так просто от умножения стать ноль! Значит математика это не точная наука? Кто то когда то придумал это «правило» не известно для чего. Ваша математика ошибается. На практике, вся эта математическая тема с умножением на 0, не может быть!!! Как 10 чего-нибудь желая приумножить, пусть даже на 0 — получится 0?? Если конечно 0 не является черная дыра, или 0 как проиграшь, в никуда, ноль — как пустота, ничто, но такого быть не может….

Если не можете что то разделить (те же 5 яблок на 0 воображаемых корзин) то записывается результат целого числа и остаток при таком делении… 0 можно умножать многократно (типа ходил в лес 15 раз и не нашел грибов…

Например, делим 5 яблок на ноль человек; вычисляем,во сколько раз 5 градусов Цельсия больше нуля градусов Цельсия. Из этого всего скорее нельзя умножать на 0 (так как по определению умножения это НЕЛЬЗЯ записать с помощью операции сложения) и делить сам 0 на что то… так как ответ не может быть определен…

Подмена понятий происходит при самом умножении на ноль… Запомните любое число или операция с числами умноженное на ноль АННИГИЛИРУЕТСЯ… Иными словами не происходит самой операции при умножении на ноль и ее можно просто «не учитывать»… Так, вы украли мою идею!))) Впервые встречаю более-менее четкое понимание умножения и деления на ноль. Будем мы это считать математическими операциями, или не будем — математике глубоко плевать.

Первый пример проблематичности нуля — это натуральные числа. В русских школах ноль не является натуральным числом, в других школах ноль является натуральным числом. Кому интересен вопрос возникновения нуля, предлагаю прочесть статью «История нуля» Дж. Дж. О’Коннора и Е. Ф. Робертсона в переводе И. Ю. Осмоловского.

При каких значениях икса верно равенство: ноль умноженное на икс равняется ноль? — данное равенство верно при любых значениях икс. Говорят, что это равенство имеет бесконечное множество решений. С математикой было несколько проще. Самым естественным образом на мою природную безграмотность накладываются банальные опечатки при наборе текста.

Я противник тех проповедей, которые читают нам математики и на которые мы все))) ссылаемся. С этим уравнением была совсем друга история. Может такое быть или не может? Немного подумав, я «провел мысленный эксперимент»))) и представил эту ситуацию. Где-то в черновиках валяются все выкладки по этому поводу. Вы лукавите То что не принято в широких кругах, не обязательно является не правдой.

Как правильно пишется — ноль или нуль? Слова ноль и нуль совпадают в значении, но различаются употреблением. Кто сказал, что ноль — это число? Математики? 0 + 5/0… ноль и пять (нулевых) в остатке … и тогда все сходится и все довольны… Да на самом деле сложностей не так много. Проблема в том как воспринимать Ноль (как число или как нечто пустое) и что подразумевать под умножением…

МКОУ Сарыбалыкская СОШ

Учитель начальных классов: Маковеева Марина Валентиновна

Урок математики в 4 классе. (учебник для специальных (коррекционных)образовательных учреждений VIII вида, автор М. Н. Перова)

Тема: «Умножение числа нуль и на нуль. Деление нуля».

Цель: познакомить с правилом умножения числа 0 и на 0, деления 0;закреплять знание таблицы умножения, умение решать задачи изученных видов; учить рассуждать и делать выводы.

Планируемые результаты: учащиеся научатся выполнять умножение 0 на число, число на 0, делить 0; пользоваться таблицей умножения и деления; решать задачи изученных видов; оценивать правильность выполнения действий.

Оборудование: карточки для игры “Почтальон”; таблица с геометрическими фигурами, раздаточный материал, персональный компьютер , медиа-проектор, учебник «Математика» М. Н. Перова (4 класс ).

Тип урока: новая тема.

Вид урока: урок-игра .

Ход урока

I . Орг. момент:

Проверка домашнего задания.

II . Устный счет.

Учитель : вспоминаем табличное умножение и деление. Сейчас мы поиграем в игру “Почтальоны”. Света, ты будешь почтальоном. На доске домики с номерами. Твоя задача - взять пример-письмо, правильно его решить и определить в какой дом нам нужно отнести письмо.

3х4 2х2 9х2 3х1 3х8 25:5

6х2 16:4 3х6 9:3 6х4 5:1

4:1 3:1

Учитель : вставьте пропущенный знак действия.

4…0=4 1…3=4 5…1=6

4…4=0 1…3=3 5…1=5

3…3=0 1…0=1 9…0=0

III . Знакомство с новым материалом

ПРО НОЛЬ

Напрасно думают, что ноль

Играет маленькую роль,

Когда-то многие считали

Что ноль не значит ничего

И, как ни странно полагали

Что он совсем не есть число.

Но о его особых свойствах

Мы поведем теперь рассказ

Коль ноль к числу ты прибавляешь

Иль отнимаешь от него

В ответе тотчас получаешь

Опять то самое число

Попав как множитель средь чисел

Он мигом сводит все на нет

И потому в произведенье

Один за всех несет ответ

А относительно деленья

Нам твердо помнить нужно то,

Что уж давно в научно мире

Делить на ноль запрещено

И впрямь: какое из известных

Число за частное нам взять

Когда с нулем в произведенье

Все числа ноль лишь могут дать

Учитель : Давай проверим, все ли в стихотворении правильно:

7+0=7 7-0=7 7·0=0 7:0

Учитель : применим переместительное свойство умножения и заменим умножение сложением: 7·0=0·7=0+0+0+0+0+0+0=0

Что получилось?

Учитель : мы знаем, что деление проверяется умножением: тогда частное умножим на 0 - должно получиться 7, но это не возможно! Какое бы число мы не умножали на 0, всегда в произведении будет 0.

IV . Физминутка

V . Закрепление изученного материала

1.Решение задачи (с.143 № 7)

Учитель : о чем говорится в задаче?

Ученик: о ремонте, фундаменте, кирпичах.

Учитель : что нужно узнать?

Ученик: сколько кирпичей осталось уложить.

Учитель : сможем ли мы сразу ответить на этот вопрос?

Ученик: нет.

Учитель : почему?

Ученик: потому что мы не знаем, сколько кирпичей рабочий использовал.

Учитель : сможем ли мы это узнать?

Ученик: да.

Учитель : каким действием?

Ученик: делением.

Учитель : сможем ли мы теперь ответить на вопрос задачи?

Ученик: да.

Учитель : каким действием?

Ученик: вычитанием.

Учитель : сколько же кирпичей осталось уложить рабочему?

Ученик: (40:5=8, 40-8=32) 32 кирпича.

2.Самостоятельная работа (с. 144 № 18)

7*0 7:1 3*0 8:1

7*1 0*7 0*3 0:8

1*6 0*1 3*1 0*8

0*6 0:1 1*3 0*1

3. Работа у доски (с. 144 № 11)

7*0 0*8 0:5 1*3 5+0

7+1 0:8 6*0 1+3 5*0

7-1 8+0 8-0 4-1 5-1

VI . Повторение

1.Круговые примеры

Учитель: Мы будем лесниками. Нам надо определить высоту некоторых деревьев, для этого необходимо решить круговые примеры.

2. Арифметический диктант

Учитель : А сейчас будем стенографистами. Я диктую, а ты записываешь - стенографируешь с помощью карточек.

Сумму чисел 45 и18 (45+18=63)

Произведение чисел 8 и 3 (8*3=24)

Разность чисел 35 и 7 (35-7=22)

Частное чисел 20 и 4 (20:4=5)

3.Геометрический материал.

Учитель : последнее задание. Какие геометрические фигуры вы видите?

Посчитайте и скажите, сколько раз встречается каждая фигура.

(Круг - 12, квадрат - 6, треугольник - 6, прямоугольник - 5.)

VII . Рефлексия

Самостоятельное выполнение с. 144 № 17 (1,2 ст.). Ответы записаны на доске:0,0,0;5,5,5.

Оцени свою работу на уроке смайликом.

VIII. Домашнее задание

С. 144 № 12.

Деление на ноль в математике - деление, при котором делитель равен нулю. Такое деление может быть формально записано ⁄ 0 , где - это делимое.

В обычной арифметике (с вещественными числами) данное выражение не имеет смысла, так как:

  • при ≠ 0 не существует числа, которое при умножении на 0 даёт, поэтому ни одно число не может быть принято за частное ⁄ 0 ;
  • при = 0 деление на ноль также не определено, поскольку любое число при умножении на 0 даёт 0 и может быть принято за частное 0 ⁄ 0 .

Исторически одна из первых ссылок на математическую невозможность присвоения значения ⁄ 0 содержится в критике Джорджа Берклиисчисления бесконечно малых.

Логические ошибки

Поскольку при умножении любого числа на ноль в результате мы всегда получаем ноль, при делении обеих частей выражения × 0 = × 0, верного вне зависимости от значения и, на 0 получаем неверное в случае произвольно заданных переменных выражение = . Поскольку ноль может быть задан не явно, но в виде достаточно сложного математического выражения, к примеру в форме разности двух значений, сводимых друг к другу путём алгебраических преобразований, такое деление может быть достаточно неочевидной ошибкой. Незаметное внесение такого деления в процесс доказательства с целью показать идентичность заведомо разных величин, тем самым доказывая любое абсурдное утверждение, является одной из разновидностей математического софизма .

В информатике

В программировании, в зависимости от языка программирования, типа данных и значения делимого, попытка деления на ноль может приводить к различным последствиям. Принципиально различны последствия деления на ноль в целой и вещественной арифметике:

  • Попытка целочисленного деления на ноль всегда является критической ошибкой, делающей невозможным дальнейшее исполнение программы. Она приводит либо к генерации исключения (которое программа может обработать сама, избежав тем самым аварийной остановки), либо к немедленной остановке программы с выдачей сообщения о неисправимой ошибке и, возможно, содержимого стека вызовов. В некоторых языках программирования, например, в Go, целочисленное деление на нулевую константу считается синтаксической ошибкой и приводит к аварийному прекращению компиляции программы.
  • В вещественной арифметике последствия могут быть различным в разных языках:
  • генерация исключения или остановка программы, как и при целочисленном делении;
  • получение в результате операции специального нечислового значения. Вычисления при этом не прерываются, а их результат впоследствии может быть интерпретирован самой программой или пользователем как осмысленное значение или как свидетельство некорректности вычислений. Широко используется принцип, согласно которому при делении вида ⁄ 0 , где ≠ 0 - число с плавающей запятой, результат оказывается равен положительной или отрицательной (в зависимости от знака делимого) бесконечности - или, а при = 0 в результате получается специальное значению NaN (сокр. от англ. not a number - «не число»). Такой подход принят в стандарте IEEE 754, который поддерживается многими современными языками программирования.

Случайное деление на ноль в компьютерной программе порой становится причиной дорогих или опасных сбоев в работе управляемого программой оборудования. К примеру, 21 сентября 1997 года в результате деления на ноль в компьютеризированной управляющей системе крейсера USS Yorktown (CG-48) Военно-морского флота США произошло отключение всего электронного оборудования в системе, в результате чего силовая установка корабля прекратила свою работу .

См. также

Примечания

Функция = 1 ⁄ . Когда стремится к нулю справа, стремится к бесконеч­ности; когда стремится к нулю слева, стремится к минус бесконечности

Если на обычном калькуляторе поделить какое-либо число на ноль, то он вам выдаст букву Е или слово Error, то есть «ошибка».

Калькулятор компьютера в аналогичном случае пишет (в Windows XP) : «Деление на нуль запрещено».

Всё согласуется с известным со школы правилом, что на ноль делить нельзя.

Разберёмся, почему.

Деление — это математическая операция, обратная умножению. Деление определяется через умножение.

Поделить число a (делимое, например 8) на число b (делитель, например число 2) — значит найти такое число x (частное), при умножении которого на делитель b получается делимое a (4 · 2 = 8), то есть a разделить на b значит решить уравнение x · b = a.

Уравнение a: b = x равносильно уравнению x · b = a.

Мы заменяем деление умножением: вместо 8: 2 = x пишем x · 2 = 8.

8: 2 = 4 равносильно 4 · 2 = 8

18: 3 = 6 равносильно 6 · 3 = 18

20: 2 = 10 равносильно 10 · 2 = 20

Результат деления всегда можно проверить умножением. Результатом умножения делителя на частное должно быть делимое.

Аналогично попробуем поделить на ноль.

Например, 6: 0 = … Нужно найти такое число, которое при умножении на 0 даст 6. Но мы знаем, что при умножении на ноль всегда получается ноль. Не существует числа, которое при умножении на ноль дало бы что-то другое кроме нуля.

Когда говорят, что на ноль делить нельзя или запрещено, то имеется в виду, что не существует числа, соответствующего результату такого деления (делить-то на ноль можно, разделить — нельзя:)).

Зачем в школе говорят, что на ноль делить нельзя?

Поэтому в определении операции деления a на b сразу подчёркивается, что b ≠ 0.

Если всё выше написанное вам показалось слишком сложным, то совсем на пальцах: Разделить 8 на 2 означает узнать, сколько нужно взять двоек, чтобы получилось 8 (ответ: 4). Поделить 18 на 3 означает узнать, сколько нужно взять троек, чтобы получить 18 (ответ: 6).

Поделить 6 на ноль означает узнать, сколько нужно взять нулей, чтобы получить 6. Сколько ни бери нулей, всё равно получится ноль, но никогда не получится 6, т. е. деление на ноль не определено.

Интересный результат получается, если попробовать поделить число на ноль на калькуляторе андроида. На экране отобразится ∞ (бесконечность) (или — ∞, если делите отрицательное число). Данный результат является неверным, т. к. не существует числа ∞. По-видимому, программисты спутали совершенно разные операции — деление чисел и нахождение предела числовой последовательности n/x, где x → 0. При делении же нуля на нуль будет написано NaN (Not a Number — Не число).

«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 - 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 - 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 - 3 — это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания.

Деление на ноль

Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль?

В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Функция «деление» не определена для области значений, в которой делитель равен нулю. Делить можно, но результат — не определён

Дельть на ноль нельзя. Математика 2 класса средней школы.

Если мне не изменяет память, то ноль можно представить как бесконечно малую величину, так что бесконечность будет. А школьное «ноль — ничего» — это просто упрощение, их таких в школьной математике ууууууу сколько) . Но без них никак, все в свое время.

Войдите, чтобы написать ответ

Деление на ноль

Частное от деления на ноль какого-либо числа, отличного от нуля, не существует.

Рассуждения здесь следующие: так как в этом случае никакое число не может удовлетворить определению частного.

Напишем, например,

какое бы число ни взять на пробу (скажем, 2, 3, 7), оно не годится потому что:

\[ 2 · 0 = 0 \]

\[ 3 · 0 = 0 \]

\[ 7 · 0 = 0 \]

Что будет если поделить на 0?

д., а нужно получить в произведении 2,3,7.

Можно сказать, что задача о делении на нуль числа, отличного от нуля, не имеет решения. Однако число, отличное от нуля, можно разделить, на число, как угодно близкое к нулю, и чем ближе делитель к нулю, тем больше будет частное. Так, если будем делить 7 на

\[ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000} \]

то получим частные 70, 700, 7000, 70 000 и т. д., которые неограниченно возрастают.

Поэтому часто говорят, что частное от деления 7 на 0 «бесконечно велико», или «равно бесконечности», и пишут

\[ 7: 0 = \infin \]

Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным 7 (или приближается к 7), то частное неограниченно увеличивается.

умножение числа на 0,25 можно заменить делением на 4, а деление на 0,25 - умножением на 4. В общем виде:

С помощью этого правила быстрого счета умножать и делить на 0,25 можно и целые числа, и дроби.

Умножить число на 0, 25 - все равно, что разделить это число на 4:

В следующих примерах умножение на 0,25 также заменяем делением на 4:

Разделить число на 0,25 - все равно, что умножить его на 4:

В следующих примерах деление на 0,25 также заменяем умножением на 4:

(Умножать смешанное число на 4 можно было и по другому правилу).

Особенно полезно применять эти соображения при устном счете.

www.for6cl.uznateshe.ru

ahiin

Популярно о науке

В бытность мою практикующим, так сказать, преподавателем, любил я задать своим студентам простой вопрос:
А откуда вообще следует, что
Ну то есть, почему умножение любого числа на ноль дает ноль?

Незабываемо прекрасным было выражение одухотворенных лиц представителей будущей интеллектуальной элиты.

Нечто подобное мне удалось повидать лишь годы спустя, в Голландии:

Не, я конечно понимаю, что всем нам это в юности в школе сказали, в том нежном возрасте, когда добрая природа подавляет критическое восприятие действительности, упрощая обучение. Однако же, студенты 4-го курса таки, будущие «прафисианальные» математики.

Вообще, по определению:

Это все. Если к числу прибавить ноль, получим то же самое число. Никакого умножения в определении. Никаких свойств, связанных с умножением в определении не декларируется. Ежели кто подумал, не метнуться ли резко на Википедию, то предлагаю расслабиться: в статье про ноль, как, впрочем и по всей Википедиии, херня и годная информация экстатически слились неразделимо.

Ежели вернуться к исходному вопросу, то правильный ответ таков:»Это следует из соответствующего доказательства».

Вот оно (спасибо bortans ):

Вычитая из правой и левой части, имеем:

В этом невинном, на первый взгляд, доказательстве далеко не все просто. В процессе выкладок использован целый ряд неочевидных свойств чисел и операций над ними. Это и существование у каждого числа обратного ему относительно операции сложения, и дистрибутивность операций сложения и умножения.

Как это часто бывает в математике, за простым, даже тривиальным вопросом нередко отверзаются бездны.

Остается добавить, что систематическая аксиоматика арифметики была закончена итальянским математиком Джузеппе Пеано лишь в последние годы 19-го века. Более того, непротиворечивость аксиоматики Пеано была показана Герхардом Генценом лишь 1936 году. Арифметики. В 1936.

Как-нибудь надо будет рассказать, как пифагорейцев, которым тоже было «все и так понятно», обломала диагональ квадрата.

ahiin.livejournal.com

Почему нельзя делить на ноль?

«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Кутенкова Ольга Альфредовна

Кутенкова Ольга Альфредовна

Учитель начальных классов. Стаж работы - 7 лет. Работает в Центре Образования «Технологии обучения» В 2008 году окончила Педагогический колледж № 4. В 2011 году окончила Московский городской педагогический университет по специальности «Коррекционная педагогика в начальном образовании».

Изучение темы «Умножение и деление» начинается во 2-м классе и продолжается до конца первого полугодия 3-го класса начальной школы; со второго полугодия рассматриваются случаи внетабличного умножения и деления, дети знакомятся с частными случаями умножения и деления с числами 1 и 0.

Первоочередная задача заключается в том, чтобы учащиеся усвоили понимание смысла действия умножения и деления. К концу прохождения темы дети должны овладеть различными приемами, которые позволяют быстро находить результат без заучивания.

Определение действия «умножение». Умножение – это сложение одинаковых слагаемых. На данном этапе дети выполняют достаточно большое количество заданий на перевод сложения одинаковых слагаемых в действие «умножение» и, наоборот, – замену произведения суммой одинаковых слагаемых. Например:

3 + 3 + 3 + 3 = 3 4

Здесь обращайте внимание, что первый множитель – это само слагаемое, второй множитель – сколько раз мы складываем это слагаемое.

Определение действия «деление». Деление – действие обратное умножению. Понятие «деление» рассматривается с двух точек зрения: деление на равные части и деление по «частям». Для этого можно привести разные ролевые ситуации:

1. У Пети день рождения, и мама дала ему в школу целый кулек конфет, чтобы угостить друзей. Но при этом забыла сказать, по сколько конфет нужно дать каждому однокласснику. Мальчик раздавал по одной (чтобы не обидеть ребят!), пока все конфеты не закончились. Сколько конфет получил каждый одноклассник Пети?

2. На перемене учительница попросила дежурного раздать по 2 тетради каждому ученику. Сколько учеников получат тетради?

Эти ситуации (или их интерпретации) позволяют детям полнее осознать/понять смысл действия деления. Если эти понятия усвоены, можно разбирать принцип построения таблицы умножения. Мы остановимся на частных случаях.

Умножение 1 на число

Рассмотрим случаи умножения единицы на числа (1 > х, где х – любое натуральное число). Дети решают ряд выражений, находя результат действием сложения:

1 · 3 = 1 + 1 + 1 = 3

1 · 4 = 1 + 1 + 1 + 1 = 4

Внимание! Заменить умножение действием сложения просто необходимо, чтобы дети самостоятельно пришли к выводу: при умножении 1 на любые числа получается то число, на которое умножали.

Но не будем забывать, что в каждом случае необходимо вырабатывать математическую «зоркость», то есть анализировать и сравнивать результат и компоненты действия. Поэтому не забывайте спрашивать у детей, чем похожи и чем отличаются математические выражения, что в них особенного?

Умножение числа на 1

Это особый случай, так как его нельзя заменить сложением!

Совет родителям

Поиграйте с детьми, задайте им несколько вопросов: сколько будет, если число 7 взять 1 раз? Число 5 взять 1 раз? Можно ли записать, что мы 5 будем брать 1 раз?

Попросите их сформулировать вывод, пусть они попытаются проговорить самостоятельно и только после этого вводите «правило»: при умножении любого числа на 1 получается то число, которое умножали.

Затем можно попросить детей приписать значения произведений по правилу (стараясь не вычислять). Например: 7 1 = 7, потренируйтесь несколько раз, чтобы закрепить учебный материал.

После рассмотрения обоих случаев полезно провести обобщение:

1 7, 1 10, 1 13,

7 1, 10 1, 13 1

Вывод: если один из множителей равен 1, то произведение равно другому множителю.

Буква а обозначает любое число.

Можно найти другой подход, выводя правило, отталкиваясь от переместительного закона умножения. Если множители поменять местами, значение произведения не изменится.

Случай умножения на 0 и на 1 в целом схожи друг с другом. Умножаем нуль на любое число, находя результат действием сложения:

0 · 3 = 0 + 0 + 0 =0

0 · 5 = 0 + 0 + 0 + 0 + 0

Решив ряд аналогичных выражений, попросите детей сделать вывод:

При умножении нуля на любое число получается нуль.

Умножение числа на 0

Прежде чем сформулировать правило, попросите детей ответить на вопросы: что значит 0 бананов? Я съела 0 конфет? Я взяла 2 персика – 0 раз?

А если взять число 6 – 0 раз? Это можно сделать? Что значит 0 раз? Для этого случая умножения нельзя применять рассуждение, опирающееся на определение умножения как сложения одинаковых слагаемых, так как нельзя повторить число слагаемых 0 раз.

Детям сообщается правило:

При умножении любого числа на нуль получается нуль.

Буква а обозначает любое число

Также нельзя проводить объяснение, опираясь на перестановку множителей: «Если 0 · 5 получится 0, то и 5 · 0 получится 0». Однако когда указанные случаи введены и тоже считаются умножением (по договоренности), то можно показать, что и для них также выполняется переместительное свойство умножения.

Презентация по математике «Умножение и деление числа на 1. Умножение числа на 0. Деление 0 на число. Невозможность деления на 0»

Описание разработки

При умножении любого числа на единицу, получаем это же число.

При делении любого числа на единицу получаем это же число.

При делении числа на само себя (кроме нуля) получаем единицу.

При делении нуля на любое число (кроме нуля) получаем нуль.

На нуль делить нельзя!

Содержимое разработки

Умножение и деление любого числа на 1. Умножение числа на 0. Деление числа на само себя. Деление 0 на любое число. Невозможность деления на 0.

МБОУ СОШ №11 имени Г.С.Титова ЩМР МО

Учитель начальных классов Фоминых Е.М.

Что вы заметили?

При умножении любого числа на единицу, получаем это же число

5: 1 = 5 6: 1 = 6 7: 1 = 7

При делении любого числа на единицу получаем это же число

5: 5 = 1 6: 6 = 1 7: 7 = 1

При делении числа на само себя (кроме нуля) получаем единицу

При умножении любого числа на нуль получаем нуль

При делении нуля на любое число (кроме нуля) получаем нуль

На нуль делить нельзя!

а: 1 = а а: а = 1 0: а = а